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Markov Switching Models for Time Series Data with Dramatic Jumps
(Model Peralihan Markov untuk Data Siri Masa dengan Lompatan Drastik)
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ABSTRACT

In this research, the Markov switching autoregressive (MS-AR) model and six different time series modeling approaches 
are considered. These models are compared according to their performance for capturing the Iranian exchange rate 
series. The series has dramatic jump in early 2002 which coincides with the change in policy of the exchange rate regime. 
Our criteria are based on the AIC and BIC values. The results indicate that the MS-AR model can be considered as useful 
model, with the best fit, to evaluate the behaviors of Iran’s exchange rate. 
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ABSTRAK

Dalam penyelidikan ini model autoregresi Markov (MS-AR) dan enam pendekatan model siri masa dipertimbangkan.  
Model-model ini dibandingkan mengikut  keupayaan mendapatkan siri kadar pertukaran wang  Iran. Siri ini mempunyai 
lompatan drastik pada awal 2002 yang berlaku serentak dengan perubahan polisi kadar regim pertukaran wang.  Kriteria 
yang telah kami gunakan adalah berasaskan kepada nilai AIC dan BIC.  Keputusan menujukkan bahawa model MS-AR 
boleh dikatakan berguna.

Kata kunci: Model autoregrasi peralihan Markov; model siri masa tak linear; naik-turun kadar pertukaran

INTRODUCTION

Many economic time series associated with events such 
as financial crises, war or change in government money 
policy exhibit dramatic jumps in their behavior. When 
jumps arise in time series data, a powerful tool that up date 
themselves using a change in their regime is the Markov 
switching models. This model offers a better statistical fit 
to the data than the other models.
	 The ARCH model that was presented by Engle 
(1982) could be used in a large variety of modeling of 
the fluctuation of exchange rate (Kang, 1999; Kroner 
& Lastrapes, 1993; Wang & Wong, 1997). Engle and 
Hamilton (1990) used Markov switching (MS) model for 
survey fluctuations of dollar and showed that this model 
is better that the random walk model to forecast the 
fluctuation of dollars rate. Hamilton and Susmel (1994) 
pioneering work provides the evidence that a Markov 
switching autoregressive conditional heteroskedasticity 
(MS-ARCH) of exchange rates outperforms the ARCH and 
GARCH models for the New York stock exchange. Bollen 
et al. (2000) showed that the Markov switching model 
captures the dynamics of exchange rates better than the 
alternative time series models. Lee and Chen (2006) 
discussed the Markov switching model in exchange rate 
prediction. Ismail and Isa (2006) showed that the MS-AR 

model is the best-fitted model for modeling fluctuations 
of exchange rates for three Asian countries.
	 To control their currencies many developed countries 
have used the managed floating of exchange rates regime 
since the mid-1980s. In early 2002, the Iranian government 
adopted a managed floating for administering of the 
fluctuations of the exchange rate. This change in policy 
for exchange rate regime in Iran caused dramatic increase 
in exchange rate of the Rial per dollar (Figure 1). To find 
the best-fitted model for the behaviors of Iran’s exchange 
rate after introducing the data, two stages were taken. In 
the first stage, the comparison of the AR, ARMA, ARCH and 
GARCH models using the model selection criteria (AIC) 
will be given. In the second stage, after introducing the 
nonlinear additive AR, self-exciting threshold AR, logistic 
smooth transition AR, and Markov switching AR models 
briefly, they will be compared for analysis of our data using 
AIC, BIC values. 

DATA AND MODEL SELECTION 

In this study, we employed the Iran’s Rial per the U.S. 
dollar collected monthly for the period 1995-2009 by the 
International Monetary Fund (IMF) and could be obtained 
from http://www.imf.org . The variable under investigation 
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is exchange rate returns in percentage yt = 100 x [In(rt) – 
In (rt-1)]  where rt is the monthly exchange rate. Figure 1 
shows the Exchange rate series of the Iranian Rial per the 
US dollar. 
 To identify the best fitted model among several linear 
and nonlinear time series models, we use the Akaike 
information criterion (AIC) (Akaike 1974) or Bayesian 
Information Criterion (BIC) (Akaike 1979). These criteria 
measure the deviation of the fitted model from the actual 
one. The model with the minimum value of AIC or BIC is 
chosen. In this article, we compared eight different time 
series models based on these criteria.

COMPARISON OF AR, ARMA, ARCH, AND GARCH MODELS

In this section, we considered the AR (k), ARMA (k, l) 
(Priestley 1988), ARCH (q), and GARCH (p,q) (Mills & 
Markellos 2008) time series models. To find the order of 
fitted AR and ARMA models the plots of autocorrelation 
function and AIC are used. We used likelihood ratio test 
in order to discriminate between a p-lag and a q-lag ARCH 
and GARCH processes. The estimated parameters for the 
best-fitted models i.e. AR (2), ARMA (2, 1), ARCH (2), and 
GARCH (1, 2) models are shown in Table 1. The estimated 
parameters for AR model are more significant than ARCH 
and GARCH models. The estimated parameters for ARCH and 
GARCH models are spurious; consequently, this is evidence 
for the rejection of these models for time series modeling 
with dramatic jumps. On the other hand, the value of AIC 
for AR model is less than for the others; therefore, the AR 
model will be extended to the nonlinear autoregressive 
models such as NAAR, SETAR, LSTAR, and MS-AR in the 
following sections.

NONLINEAR ADDITIVE AUTOREGRESSIVE MODEL

A time series yt  follows a nonlinear additive autoregressive 
(NAAR) model if:

	
(1)

	 	

where the εt is noise series and fi(,) are univariate smooth 
functions. Function fi(,) is represented by penalized cubic 
regression splines and estimated by quadratically penalized 
likelihood maximization. (Wood 2004, 2006 and 2011).

SELF-EXCITING THRESHOLD AUTOREGRESSIVE MODEL

The threshold autoregressive (TAR) model introduced by 
Tong (1990). A 2-regime TAR model is given by:

(2)
	

where εts are iid . It is also called the Self- Exciting  

Threshold Autoregressive (SETAR) when the threshold 
variable zt is taken to be a lagged value of the time series 
itself that is zt = yt-d. in (2) the threshold value r is estimated 
by selecting the best fitted model. The SETAR model 
assumes that the regime St is determined by value I [Zt>r]. 
So, define St such that:

	

Then, St follows a first-order Markov process with 
transition matrix ξ given by:

	

Figure 1. The Exchange rate series of the Iranian Rial per the US dollar
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with Φ (.) being the standard normal distribution, and rk 
= (r–μ1)/σ The conditional on Zt>r the model converts 
to an AR model. So, this model is estimated for a fixed 
threshold value. 

LOGISTIC SMOOTH TRANSITION 
AUTOREGRESSIVE MODEL

The Logistic Smooth Transition Autoregressive (LSTAR) 
can be viewed as a generalization of the SETAR model. A 
more gradual transition between the different regimes can 
be obtained by replacing the indicator function I [Zt>r] in 
(2) by a continuous function logistic G(zt;γr) given by:

	 	 (3)

	 The resultant model is called a Logistic Smooth 
Transition Autoregressive (LSTAR). The parameter r in (3) 
can be interpreted as the threshold between the two regimes 
corresponding to G(zt; γ, r)=0 and G(zt; γ, r)=1 , in the 
sense that the logistic function changes monotonically from 
0 to 1 as ztincreases, while G(zt; γ, r)=0.5. The parameter 
γ determines the smoothness of the change in the value of 
the logistic function (Teräsvirta 1994; Franses & van Dijk 
2000).

MARKOV SWITCHING AUTOREGRESSIVE MODEL

The Markov switching autoregressive (MS-AR) model 
introduced by Hamilton (1989). MS-AR model with two 
regimes is written as:

	 (4)

	
For t=1,… , T.	
In this model, the parameters are depended on the regime at 
time t, indexed by st, that regimes are discrete unobservable 
variable. The transition between the regimes is governed 
by a first order Markov process as follows:

	 It is convenient to summarize these transition 
probabilities in p is written as:

(5)
	 	

Table 1. The estimated parameters of AR, ARMA, ARCH, and GARCH model

Coefficient Stand. Error
a0(constant) 0.7607 0.6294(0.2284)

AR

a1 0.3565 0.0748(3.7e-0.6)***

a2 -0.128 0.0886(0.0886)
σ

AIC
8.2255
760.38

ARMA

aο (Constant) 0.9989 0.9009(0.268)
a1 -0.021 0.4975(0.997)
a2 -0.0138 0.1938(0.943)
b1 0.652 0.4929(0.459)
σ

AIC
8.2861
1272.99

ARCH

α0 (Constant) 69.17 5.255(<2e-16)***

α1 1.051 0.376(0.052)
α2

AIC
1.09e-13

1122.35
0.0114(1.00)

GARCH

α0 (Constant) 65.33 0.6294(0.0002)***

α1 0.1858 0.0748(<2e-16)***

α2 0.415 0.1062(0.6958)
β1

AIC
8.0e-13

1139.78
0.2604(1.00)

P-values are reported in the parenthesis .***,**, * denotes significance of the coefficient at the 0%, 10%, 5% level.
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With p00+p01=1, p10+p11=1 .
To estimate the parameters of MS-AR model by MLE the 
density of yt given the past information of Ψt−1 is:

	 We need the values of st which are unobserved. Thus, 
we have:

f yt Ψ t−1( ) = f yt , st Ψ t−1( )
st =0

1

∑

= f yt st ,Ψ t−1( )∑ P st Ψ t−1
⎡⎣ ⎤⎦.  

	 Then, the log likelihood function is given by:

	
		  (6)
	  

	 In (6), P[stΨt−1] is filtered probabilities, which this 
probabilities calculate using of the Filter introduced by 
Hamilton (1989) for t=1,…, T. Filtered probabilities refer 
to inferences about st conditional on information up to t, 
Ψt. The next step, we calculate smoothed probabilities 

using all the information in the sample, ΨT for 
t= T-1, T-2, …, 1 and given at the last iteration 
of filter.

COMPARISON OF NAAR, SETAR, LSTAR, 
AND MS-AR MODELS

In this section we first extended the AR (2) process NAAR 
(2) model. The estimated parameters for NAAR model is 
shown in Table 2. The values of AIC and BIC for this model 
is less than that obtained for AR model. Thus, at this stage 
the NAAR model is preferred.
	 Now as we have the change in policy of the exchange 
rate regime of Iran in 2002, therefore it seems that the 
nonlinear autoregressive models with switching regime 
such as SETAR, LSTAR, and MSAR are more appropriate than 
NAAR model.
	 Then, we estimated SETAR, LSTAR, and MSAR. In these 
models, the parameters were allowed to shift in the various 
regimes. For MSAR models the transition between regimes 
were only depended on previous regime, as it follows a 
hidden Markov chain with transition probabilities. Also 
in this model regimes were unobserved, thus transition 
between regimes is stochastic. But, in a SETAR and LSTAR 
models transition between regimes depend to the past 
observation of the process, since the transition matrix and 
regimes are known, thus transition between regimes was 
deterministic.
	 We determined the number of regimes using AIC 
(Cologni & Manera  2009; Psaradakis & Spagnolo 

2003). Using this strategy, we considered two-regime for 
modelling nonlinear autoregressive models with switching 
regime. Regimes 0 and 1 describe low and high the 
fluctuations of exchange rate phases respectively. Note that 
when the fluctuations of exchange rate are low, the process 
is in low regime. On the other hand, when the fluctuations 
of exchange rate are high (and increase); the process is in 
high regime.

Table 2. The estimated parameters of  NAAR model.

Coefficient Stand. 
Error T.value Pr(>|t|)

f0 0.9849 0.2574 3.8262 0.00183***

Approximate significance of smooth terms
edf Ref.df F p-value

f1

f2

5.222

2.9492

5.7278

3.2901

172.962

2.3436

< 2e-16 ***

0.06908*

AIC    467.1829
BIC     527.7433

P-values are reported in the parenthesis .***,**, * denotes Significance of the 
coefficient at the 0%, 1%, 5% level. edf is the array of estimated degrees of 
freedom for the model terms.

Table 3. The estimated parameters of SETAR 
model with details.

Coefficient Stand. Error
a0 0.3824 0.3616 (0.2918)
a1 -0.288  0.8008 (0.7195)

Regime 0 a2 -0.007 0.0401 (0.8602)

σ 4.3278

aο 0.5950 0.8895(0.5044)

Regime 1 a1 2.3124 0.1021 ) <2e-16***(

a2 -6.1444 0.2873(<2e-16)***

σ 4.3278
threshold value	  	  0.4059
Proportion of points in regime 0 	 84.75%
Test of Linear against SETAR	  1908.462 (0.00)***

AIC 538.5391
BIC 560.8508

P-values are reported in the parenthesis .***,**, * denotes  Significance of the 
coefficient at the 0%, 1%, 5% level.

	 Empirical details for the SETAR model are presented in 
Table 3. Test of linearity against threshold (Hansen 1999) 
is statistically significant. Thus, the AR process is rejected 
against SETAR model; see Table 3. In order to determine 
Lagged value of threshold variable zt, the AIC is used and 
the threshold variable in the form of zt=yt-1 is selected. 
Thus, the fitted model is as follows (Table 3):
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yt= (0.3824 – 0.288 yt–1 – 0.007 yt-2)(1–I[yt–1 > 0.4059]) + 
(0.595 + 2.3124 yt–1 – 6.1444 yt–2(I[yt–1 > 0.4059]).

	 Note that the two-lag autoregressive for second regime 
are statistically significant at conventional significance 
levels. Proportion of points in regime 0 is 84.75% (Table 
3) which indicates that the process is more in regime 0. 
In addition, the values of AIC and BIC for this model are 
538.5391 and 560.8508, respectively. 
	 The fitted LSTAR model is:

yt= (0.3817 – 0.1675yt–1 – 0.0073 yt-2)(1–G[yt–1 > 3.41)) 
+ (7145.6626 – 172.8318 yt–1 – 292.8142 yt–2

(G[yt–1 > 3.41)),

where:

	

	
	 The values of AIC and BIC for LSTAR model are 418.670 
and 444.8362, respectively which are less than that obtain 
a for the SETAR model. Therefore, when a more gradual 
transition occurs between different regimes, then it seems 
that the SETAR model is more suitable than the others. 

table 4. The estimated paremeters of MS-AR 
model with details.

Coefficient Stand. Error
aο 0.1099 0.0152 (0.00)***

a1 0.2521 0.0186 (0.00)***

Regime 0 a2 -0.0488 0.0056 (0.00)***

σ 0.0148

aο 34.1187 1.1170 (0.00)***

Regime 1 a1 0.0548 0.0015(0.00)***

a2 -0.4663 0.0294 (0.00)***

σ 14.5143
	 Regime 0	 Regime 1 

Regime 0	 0.91	 0.63
Regime 1	 0.09	 0.37 
the expected duration of regime 0	 11.59
the expected duration of regime 1	 1.58 
Log. Likelihood               -161.7751	
AIC	 347.55
BIC	 385.66

P-values are reported in the parenthesis .***,**, * denotes  Significance of the 
coefficient at the 0%, 1%, 5% level.

RAJAH 2. Smoothed probabilities of regimes (a) Probabilities of Regime 0 and (b) Probabilities of Regime 1

1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 

1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 
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	 Using the criteria: values of AIC and BIC, value of 
the log-likelihood function, estimated matrix of transition 
probabilities that showed the probability of switching 
between regimes, estimated variance and considering 
the significant of P-value of estimated coefficients, 
we compared the different types of Markov switching 
autoregressive models. Using this selection strategy, the 
best performance was obtained for the MS-AR model with 
two regimes with a two-lag autoregressive components. 
The details of the model fitted for MS-AR is presented 
in Table 4. All estimated coefficients are statistically 
significant at conventional significance levels. The 
transition probabilities  and 

suggest that the regime 0 is 
found to be more persistent. When the process is in regime 
0, there is a low probability that it switches to regime 

. The average duration of each 
regime supports this conclusion, as can be seen from Table 
4, the expected duration of regime 0 and 1 are 11.59 and 
1.58, respectively. 
	 Figure 2 shows the time series of smoothed 
probabilities for fluctuations of the exchange rate of Iran 
based on the MSAR model. This figure shows the probability 
of being in regime 0 or 1 at specific time. At the beginning 
of 2002 the fluctuations for exchange rate of Iran was 
extremely high which causes the process be in regime 1 
with probability 1. In the other years since the fluctuations 
for exchange rate is low, therefore the process is in regime 0 
with a high probability. In 2008 and 2009 there were some 
fluctuations at exchange rate which causes transition from 
one regime to the other alternatively. 
	 The deviation of the fitted model from MSAR based 
on the values of AIC and BIC are 347.55 and 385.66 
respectively.
	 Table 5 shows the comparison of the AIC for different 
time series models such as AR, ARMA, ARCH, GARCH, 
NAAR, SETAR, LSTAR, MS-AR. The results show that among 
these models the MSAR model is best fit for modeling the 
fluctuations of the exchange rate of Iran, with the lowest 
AIC value. 

CONCLUSION

The MSAR model has the least value of AIC comparing the 
other models for the modeling of the Iranian exchange 
rate series fluctuations. In addition, using the MSAR model 
enables us to have better estimated parameters that are 
statistically significant at conventional significance levels. 
The plots of the smoothed probabilities of regimes are 
obviously showing the fluctuations of the Iranian exchange 
rate series.
	 Consequently, the MSAR model can be considered as 
a powerful tool for modeling time series with dramatic 
jumps in their behavior. It should be noted that there 
is an alternative method, namely, Singular Spectrum 
Analysis (SSA) which works very well for time series 
analysis, forecasting and change point detection (Hassani 
2007; Hassani et al. 2009; Hassani et al. 2010; Hassani & 
Thomakos 2010). Applying the SSA method is part of our 
future plan. 
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